Acta Cryst. (1999). C55, 1412-1413

[4-(4-Methylphenyl)-3,5-bis(2-pyridyl)-4H-1,2,4-triazole]bis(triphenylphosphine)silver(I) perchlorate

Si-Chang Shao, ${ }^{a} \dagger$ Dun-Ru Zhu, ${ }^{a}$ Xu-Hu Zhu, ${ }^{a}$ Xiao-Zeng You, ${ }^{a}$ S. Shanmuga Sundara Raj ${ }^{b}$ and Hoong-Kun Fun ${ }^{b}$
${ }^{a}$ Coordination Chemistry Institute \& State Key Laboratory of Coordination Chemistry, Nanjing University, Nanjing 210093, People's Republic of China, and ${ }^{\text {b }} \mathrm{X}$-ray Crystallography Unit, School of Physics, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia. E-mail: hkfun@usm.my

(Received 8 June 1999; accepted 16 June 1999)

Abstract

The coordination geometry of silver(I) in the title compound, $\left[\mathrm{Ag}\left(\mathrm{C}_{19} \mathrm{H}_{15} \mathrm{~N}_{5}\right)\left(\mathrm{C}_{18} \mathrm{H}_{15} \mathrm{P}_{2}\right] \mathrm{ClO}_{4}\right.$, is distorted tetrahedral. The pyridyl groups, the substituted benzene ring and the $1,2,4$-triazole moiety do not share a common plane. The perchlorate ion is highly disordered and is involved in $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonding.

Comment

The complexes of silver(I) and copper(I) containing phenylphosphine ligands were found to possess anticancer activity (Berners Price \& Sadler, 1988; Berners Price et al., 1990). As part of our ongoing study of substituted 1,2,4-triazole compounds (Fun et al., 1999; Wang et al., 1998; Chen et al., 1998), and of their coordination behaviour and properties, we describe herein the structure of [4-(4-methylpheny))-3,5-bis(2-pyridyl)$4 H-1,2,4$-triazole Jbis(triphenylphosphine) silver(I) perchlorate, (I).

(I)

The coordinating geometry of the Ag^{I} atom in (1) is distorted tetrahedral, with asymmetric $\mathrm{Agl}-\mathrm{Nl}$ and

[^0]$\mathrm{Ag} 1-\mathrm{N} 4$ bond lengths of 2.308 (2) and 2.548 (2) \AA, respectively. As can be seen, the $\mathrm{Ag} 1-\mathrm{N} 4$ bond length is greater than the $\mathrm{Agl}-\mathrm{Nl}$ bond length, but it is comparable to the value reported by Fu et al. (1997). The $\mathrm{P} 2-\mathrm{Agl}-\mathrm{N} 4$ and $\mathrm{N} 1-\mathrm{Ag} 1-\mathrm{N} 4$ bond angles of 99.90 (5) and $68.20(7)^{\circ}$, respectively, deviate strikingly from the value of 109.5° expected for a normal tetrahedron. This distortion may arise from the steric hindrance of the bulky triphenylphosphine groups. The $\mathrm{Ag}-\mathrm{P}$ distances of 2.438 (1) and 2.494 (1) \AA in (I) are shorter than the $\mathrm{Ag}-\mathrm{P}$ distances of 2.668 (5) and 2.659 (2) \AA in $\left[\mathrm{Ag}\left(\mathrm{PPh}_{3}\right)_{4}\right] \mathrm{ClO}_{4}$ (Engelhardt et al., 1985).

The ligand is coordinated to Agl via the N1 atom of the triazole moiety and via the N 4 atom of the neighbouring pyridine ring, leaving the corresponding N 2 and N 5 atoms uncoordinated. The pyridyl groups, the substituted benzene ring and the $1,2,4$-triazole moiety do not share a common plane. The triazole ring makes dihedral angles of 17.0 (1) and 25.5 (2) $)^{\circ}$ with the N4and N5-containing pyridine rings, respectively, while the pyridine rings are inclined at an angle of $42.2(2)^{\circ}$ to one another. The interplanar angle between the triazole and phenyl rings is $68.3(1)^{\circ}$. The perchlorate ion is highly disordered and is involved in $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonding.

Fig. 1. The structure of (I) showing 30% probability displacement ellipsoids and the atom-numbering scheme (the perchlorate ion and the H atoms have been omitted for clarity).

Experimental

The title compound was prepared by the reaction of equal amounts of 4 -(p-methylphenyl)-3,5-bis(2-pyridyl)-4H-1,2,4triazole, $\mathrm{Ag}\left(\mathrm{PPh}_{3}\right)_{2} \mathrm{NO}_{3}$ and NaClO_{4} in methylene dichloride at room temperature. Single crystals suitable for X-ray analysis were obtained from acetone.

Crystal data
$\left[\mathrm{Ag}\left(\mathrm{C}_{19} \mathrm{H}_{15} \mathrm{~N}_{5}\right)\left(\mathrm{C}_{18} \mathrm{H}_{15} \mathrm{P}\right)_{2}\right]-$
$\quad \mathrm{ClO}_{4}$
$M_{r}=1045.22$
Monoclinic
$P 2_{1} / c$
$a=16.7610(2) \AA$
$b=14.2287(2) \AA$
$c=21.1305(2) \AA$
$\beta=97.691(1)^{\circ}$
$V=4994.02(10) \AA^{3}$
$Z=4$
$D_{x}=1.390 \mathrm{Mg} \mathrm{m}^{-3}$
D_{m} not measured

Mo $K \alpha$ radiation
$\lambda=0.71073 \AA$
Cell parameters from 8192 reflections
$\theta=1.23-28.36^{\circ}$
$\mu=0.572 \mathrm{~mm}^{-1}$
$T=293(2) \mathrm{K}$
Slab
$0.38 \times 0.36 \times 0.18 \mathrm{~mm}$
Colourless

Data collection
Siemens SMART CCD areadetector diffractometer ω scans
Absorption correction: empirical (SADABS; Sheldrick, 1996) $T_{\text {min }}=0.812, T_{\text {max }}=0.904$
33642 measured reflections
12270 independent reflections

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.040$
$w R\left(F^{2}\right)=0.111$
$S=1.047$
12270 reflections
641 parameters
H atoms constrained
$w=1 /\left[\sigma^{2}\left(F_{o}^{2}\right)+(0.0503 P)^{2}\right]$
where $P=\left(F_{o}^{2}+2 F_{c}^{2}\right) / 3$
$(\Delta / \sigma)_{\text {max }}=0.002$
$\Delta \rho_{\text {max }}=0.330 \mathrm{e}^{-3}$
$\Delta \rho_{\text {min }}=-0.357 \mathrm{e}^{-3}$
Extinction correction: none Scattering factors from International Tables for Crystallography (Vol. C)

Table 1. Selected geometric parameters $\left(\AA^{\circ},^{\circ}\right)$

$\mathrm{PI}-\mathrm{C} 19$	$1.818(3)$	$\mathrm{P} 2-\mathrm{C} 7$	$1.826(3)$
$\mathrm{PI}-\mathrm{C} 31$	$1.826(3)$	$\mathrm{P} 2-\mathrm{C} 1$	$1.826(3)$
$\mathrm{PI}-\mathrm{C} 25$	$1.829(3)$	$\mathrm{P} 2-\mathrm{C} 13$	$1.834(3)$
$\mathrm{N} 1-\mathrm{Ag} 1-\mathrm{P} 1$	$120.04(5)$	$\mathrm{Pl}-\mathrm{Ag} 1-\mathrm{P} 2$	$122.99(2)$
$\mathrm{N} 1-\mathrm{Ag} 1-\mathrm{P} 2$	$111.87(5)$	$\mathrm{Pl}-\mathrm{AgI}-\mathrm{N} 4$	$119.39(5)$

Table 2. Hydrogen-bonding geometry ($\AA,^{\circ}$)

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \ldots A$	$D — \mathrm{H} \cdots A$
C48-H48A \cdots O4A	0.93	2.47	$3.36(1)$	160
C49—H49A \cdots O4A"	0.93	2.56	$3.37(1)$	146
Symmetry codes: (i) $-x, y-\frac{1}{2}, \frac{1}{2}-z ;$ (ii) $x, \frac{1}{2}-y, z-\frac{1}{2}$.				

The perchlorate ion is highly disordered. The $\mathrm{O} 2, \mathrm{O} 3$ and O4 atoms were refined with 60 and 40% occupancies for the two conformers, while the Ol atom was refined with full occupancy.

Data collection: SMART (Siemens, 1996). Cell refinement: SAINT (Siemens, 1996). Data reduction: SAINT. Program(s) used to solve structure: SHELXTL (Sheldrick, 1997). Program(s) used to refine structure: SHELXTL. Molecular graphics: SHELXTL. Software used to prepare material for publication: SHELXTL and PARST (Nardelli, 1995).

Diamminebis(2,4,6-trichlorophenolato)copper(II)

Gülsün Gökağaç, ${ }^{a}$ Leyla Tatar, ${ }^{b}$ Duygu Kisakürek ${ }^{a}$ and Dinçer Ülküu ${ }^{b}$
${ }^{a}$ Middle East Technical University, Department of Chemistry, 06531 Ankara, Turkey, and ${ }^{b}$ Hacettepe University,
Department of Engineering Physics, Beytepe 06532, Ankara, Turkey. E-mail: ggulsun@metu.edu.tr

(Received 4 January 1999; accepted 6 May 1999)

Abstract

The crystal structure of the title compound, $\left[\mathrm{Cu}\left(\mathrm{C}_{6} \mathrm{H}_{2}-\right.\right.$ $\left.\mathrm{Cl}_{3} \mathrm{O}\right)_{2}\left(\mathrm{NH}_{3}\right)_{2}$], has been determined by X-ray diffraction. The title monomeric centrosymmetric $\mathrm{Cu}^{\mathrm{II}}$ complex

[^0]: \dagger Visiting Scholar from Fuyang Normal College, 236032 Anhui, People's Republic of China.

